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Outline 

¨  Analyzing individual features 
¤ Signal to noise ratio 
¤ Null hypothesis testing 

¨  Analyzing feature vectors 
¤ Divergence 
¤ Chernoff Bound and Bhattacharyya Distance 
¤ Scatter Matrices 
¤ Feature Subset Selection 
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Which feature would you choose? 
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Signal to Noise Ratio 

¨  We wish to select features that have a high signal-to-noise 
ratio. 

¨  Typically we measure the signal strength as the difference in 
the class-conditional means: 

¨  The noise can be characterized by the conditional standard 
deviation.  If the class-conditional distributions can be assumed 
to have the same standard deviation, the signal-to-noise ratio 
can be expressed as: 

  S = µ2 ! µ1

  
SNR =

µ2 ! µ1

"
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Signal to Noise 

¨  Why is this a meaningful number? 

¨  Suppose that the class-conditional distributions are Gaussian, i.e., 

¨  Recall that for the equal variance case, the maximum likelihood classifier will select 
the class based upon the Mahalanobis distance.  In this case, this means that 

¨  wlog, suppose           Then the decision rule becomes 

  
SNR =

µ2 ! µ1

"

    
x1 !N µ1,!

2( ), x2 !N µ2,!
2( )

  

x ! µ1 < x ! µ2 "#1

x ! µ1 > x ! µ2 "# 2

 µ1 < µ2.

  

x < x0 !"1

x > x0 !" 2   
where x0 =

1
2

µ1 + µ2( )
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Signal to Noise 

¨  The probability of error is therefore: 

  
p(error) = p x > x0 |!1( )p !1( ) + p x < x0 |! 2( )p ! 2( )

  
Then p(error) = 1

2
1! F x0;µ1,"

2( ) + F x0;µ2,"
2( )( )
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Thus the probability of error depends only on the SNR, 

µ2 ! µ1

"
.
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SNR:  Unknown Parameters 

¨  Thus when selecting features a good first-order rule is to select 
the features with maximal SNR (for minimal error). 

¨  Normally, we do not know the class-conditional parameters, 
and must estimate them from data.   

¨  We could compute an ML estimate.  However, convention is to 
use unbiased estimates of the parameters: 

  

SNR =
x2 ! x1

s
where

xi =
1
Ni

xj
" j =i
# and s2 =

xj ! x1( )2

" j =1
# + xj ! x2( )2

" j =2
#

N1 +N2 ! 2
.
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SNR:  Unknown Parameters 

¨  Note that due to sampling error, the estimated 
parameters will not be exactly correct. 

¨  As a consequence, even if a feature is completely 
uninformative for the classification, the SNR estimate 
will still be non-zero. 

¨  How can we filter out these uninformative features? 

  

SNR =
x2 ! x1

s
where

xi =
1
Ni

xj
" j =i
# and s2 =

xj ! x1( )2

" j =1
# + xj ! x2( )2

" j =2
#

N1 +N2 ! 2
.
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Null Hypothesis Testing 

¨  One approach is to use a null hypothesis testing (NHT) procedure. 

 

¨  Notice that the precision of this distribution increases linearly with the number of 
training inputs.  In particular, if we knew the variance, we could form the test statistic 

  

Suppose that the observations x are normally distributed.
Since the x i  are linear functions of x, these are also normally distributed:

    
xi !N µi ,!

2 / Ni( ) (Lecture 1 – Topic 7.2) 

 Thus x2 ! x1 is also normally distributed:

    
x2 ! x1 !N µ2 ! µ1,
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The t-statistic 

¨  However, s is also a random variable, and so the 
SNR is not distributed as a Gaussian. 

¨  Instead, under the null hypothesis (no difference in 
the means), the statistic 

follows a student’s t distribution with N1+N2-2 
degrees of freedom. 

  
SNR =

x2 ! x1

s
.

  

t =
x2 ! x1

s
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The t-test 

¨  Given this statistic, one can compute the probability that a value this large (in 
absolute value) would be produced were there no difference in the means 
(the null hypothesis). 

¨  In the NHT procedure, we ‘fail to reject’ the null hypothesis if this probability 
exceeds a pre-specified value, typically .05. 

¨  In selecting features, we can choose to reject any feature that does not meet 
this NHT criterion. 

  

t =
x2 ! x1

s
1
N1

+ 1
N2

"

#$
%
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Generalizing to Multiple Classes   

¨  The NHT approach can be generalized to K>2 
classes using analysis of variance (ANOVA) 
methods. 

¨  We will not cover these here. 
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Example 
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N1 = 2429
N2 = 4548

  t = 30.4! p = 2.4 "10#190.

  t = !59.6" p = very small!!
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Limitations of NHT for Feature Selection 

¨  A significant t-statistic indicates that there is 
sufficient training data to reveal a discriminative 
signal in a particular feature. 

¨  However, it does not guarantee that including the 
feature will improve your classification rate on new 
data. 

¨  The main problem is that the discriminative 
information in that feature may be redundant with 
information in other features. 
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ROC Curves 

¨  As the criterion threshold is swept from right to left, p(HIT) 
increases, but p(FA) also increases. 

¨  The resulting plot of p(HIT) vs p(FA) is called a receiver-
operating characteristic (ROC). 

d’ = 1

Hits = 97.5% 

False alarms = 84%

Hits = 84%

False alarms =  50%

Hits = 50%

False alarms =  16%

Figure 3: Effect of shifting the criterion.

happens the subject’s choices are not so difficult as before. They can pick a criterion to
get nearly a perfect hit rate with almost no false alarms. ROC curves for stronger signals
bow out further than ROC curves for weaker signals.

Varying the noise. There is another aspect of the probability densities that also deter-
mines detectability: the spread of the curves. For example, consider the two sets of proba-
bility densities in Figure 5. The separation between the peaks is the same but the second
set of curves are much skinnier. Clearly, the signal is much more discriminable when
there is less spread (less noise) in the probability densities. So the subject would have an
easier time setting their criterion in order to be right nearly all the time.

In our example, we have assumed Poisson noise so the absorption count variance is
proportional to the mean absorption count. However, one can easily imagine situations
in which the response variance depends on factors that are independent of the mean
response.

Discriminability index ( ). Thus, the discriminability of a signal depends both on the
separation and the spread of the noise-alone and signal-plus-noise curves. To write down
a full description of how discriminable the signal is from no-signal, we want a formula
that captures both the separation and the spread. The most widely used measure is called
d-prime ( ), and its formula is simply:

where the separation corresponds to the difference between the means, and the spread
corresponds to the standard deviation of the probability densities. This number, , is
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Figure 4: Internal response probability density functions and ROC curves for different
signal strengths. When the signal is stronger there is less overlap in the probability of
occurrence curves, and the ROC curve becomes more bowed. A: Probability density func-
tions when the signal evokes an average of 2 photon absorptions per trial. B: Probability
density functions when the signal evokes an average of 5 photon absorptions per trial.
C: ROC curves for a series of signal strengths that evoke an average of
photon absorptions per trial. In all cases the dark noise (average number of spontaneous
isomerizations per trial) was 3.

a complete characterization of the detectability of the signal assuming that the noise
follows a normal (Gaussian) distribution with a fixed variance, independent of the sig-
nal strength. This assumption of IID (independent and identically distributed) Gaussian
noise is often reasonable approximations. However, if you have more information about
the noise distribution (e.g., that it follows the Poisson distribution), you might as well use
that information rather than assuming IID Gaussian noise.

The primary virtue of , and the reason that it is so widely used, is that its value does
not depend upon the criterion the subject is adopting, but instead it is a true measure of
the internal response.

Comparing neural responses with behavioral performance. Let’s say that we carefully
measure, in a separate experiment, the average number of spontaneous (thermal) isomer-
izations per trial. Then we can compute a series of ROC curves each corresponding to
a different number of photon absorptions. Figure 4 shows such a family of ROC curves.
Exactly how to compute these curves is illustrated in assignment3Tutorial.m.

Now we do our detection experiment in which we ask our subject to run 1000 trials.
On half the trials, the flash is absent (noise-only trials) and on half the trials the light is

6

  SNR = 0

 Increasing SNR



End of Lecture 
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Outline 

¨  Analyzing individual features 
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¨  Analyzing feature vectors 
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¤ Scatter Matrices 
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Divergence 

¨  The divergence between two class-conditional distributions is a 
symmetrization of the Kullback-Leibler distance between the two 
distributions: 

¨  The separability of M classes can then be defined as  

   

Divergence d
ij
= D

ij
+ D

ji
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+ D
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 are the Kullback-Leibler divergences:
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Properties of the Divergence 

¨  If the components of the feature vectors 
are conditionally independent, then 

¨  The divergence is general in the sense that 
it can be non-zero even if the class-
conditional means are the same. 

¨  However, for multivariate normal 
distributions with equal covariance 
matrices, the divergence reduces to the 
Mahalanobis distance between the means: 
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Chernoff Bound 

¨  The minimum classification error Pe attainable by a Bayes classifier 
for two classes is given by 

¨  Using the inequality 

     

     yields the Chernoff bound: 

 

 

¨  Since this must apply for all s between 0 and 1, one can (in theory) 
find the tightest bound by constrained minimization with respect to s. 
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Bhattacharyya Distance 

¨  Using s = 1/2, and assuming multivariate normal 
distributions, a specific form of the Chernoff 
distance known as the Bhattacharyya distance can 
be derived.  

¨  Again, if the covariances are equal, the 
Bhattacharyya distance is proportional to the 
Mahalanobis distance. 
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Scatter Matrices 

¨  The divergence and Chernoff bound are only readily computed for normal distributions. 

¨  A more easily computed measure of class separability is based upon scatter matrices. 

¨  The within-class scatter matrix Sw is defined as: 

 

¨  The between-class scatter matrix Sb is defined as: 

 

¨  The mixture scatter matrix Sm is defined as:  
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Scatter Matrices 

¨  Measures of separability can be formed from these 
scatter matrices.  Recalling that: 
¤ The trace of the covariance matrix is equal to the sum 

of the eigenalues and is a measure of the total 
variance in the data 

¤ The determinant of the covariance matrix can also be 
used as a measure of the total variability and is 
sometimes called the generalized variance  

¨  We have the following measures of separability: 

  

J
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trace S
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Example 
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Selecting Feature Vectors 

¨  The methods we have discussed provide a means for 
selecting a single feature. 

¨  One can use any of these to select a subset of features 
based upon their individual merits. 

¨  However, this does not take into account the statistical 
redundancy between these features. 

¨  Ch 5.7.2 of the textbook discusses some heuristics for 
reducing this redundancy when selecting feature 
subsets.  We will not discuss these here. 

¨  We will discuss more powerful and principled methods 
for selecting feature subsets (dimensionality reduction, 
boosting) in coming lectures. 


