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Which feature would you choose?
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Signal to Noise Ratio

We wish to select features that have a high signal-to-noise
ratio.

Typically we measure the signal strength as the difference in
the class-conditional means:

S= M, U

The noise can be characterized by the conditional standard
deviation. If the class-conditional distributions can be assumed
to have the same standard deviation, the signal-to-noise ratio
can be expressed as:

SNR=t2"t
o
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Signal to Noise

SNR=t2—"F
o

Why is this a meaningful number?

Suppose that the class-conditional distributions are Gaussian, i.e.,

X, ~N(,u1,62), X, ~IN(,u2,62)

Recall that for the equal variance case, the maximum likelihood classifier will select
the class based upon the Mahalanobis distance. In this case, this means that

x| <|x— ] > o

|x—,u1| >|x—,u2| -,

wlog, suppose 1, < i,. Then the decision rule becomes

X< X, = o, 1
where x;, = —(u1 +u2)
X>X, =, 2

YO
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Signal to Noise

1 The probability of error is therefore:

p(error) = p(x> X, |a)1)p(a)1)+p(x< X, |a)2)p(a)2)

2
L . 2 . .. . . . 2\ a 1 X (X,—‘LL) ,
etF(x,,u,o ) represent the cumulative normal distribution, i.e., F(x,,u,o ) :\/2_— exp| — 257 dx
o .

Then p(error) = ;(1 F( Xy 1,0 )+F( Xy 1y, O ))

A F[ —H 01J F[XO_“2;0,1]
2 o o

V| Xk ;0,1]+F(XO s ;0,1J
2 o (o}

“MWE[ He g | p| Mg g
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=F ——“2_“1;0,1)
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Thus the probability of error depends only on the SNR, iy
lo}
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SNR: Unknown Parameters

Thus when selecting features a good first-order rule is to select
the features with maximal SNR (for minimal error).

Normally, we do not know the class-conditional parameters,
and must estimate them from data.

We could compute an ML estimate. However, convention is to
use unbiased estimates of the parameters:

SNR = X, =%
s
where
1 Z(x —)‘(1)2+2(xj—_2)2
X=—Yx and &= il o2
TN N, +N, -2
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SNR: Unknown Parameters

SNR = 22— %
S
where
| S5 + 5o -5
X.=—> x, and s2 =2 .
TN & N+N,—2

Note that due to sampling error, the estimated
parameters will not be exactly correct.

As a consequence, even if a feature is completely
uninformative for the classification, the SNR estimate

will still be non-zero.

How can we filter out these uninformative features?e
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Null Hypothesis Testing

X, - X
S
One approach is to use a null hypothesis testing (NHT) procedure.

Suppose that the observations x are normally distributed.
Since the X are linear functions of x, these are also normally distributed:

SNR =

X ~ :N(,uI.,GZ/N,.) (Lecture 1 — Topic 7.2)

Thus X, — X, is also normally distributed:
_ o’ o?
X2—X1~.7\f(,u2 ‘u1’N N]

Notice that the precision of this distribution increases linearly with the number of
training inputs. In particular, if we knew the variance, we could form the test statistic

z=—22"% N0 ifp = g,
i+i

YORK

N IV
NIVER T

' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder




The t-statistic

X, —X
SNR =—2—1,
S
However, s is also a random variable, and so the

SNR is not distributed as a Gaussian.

Instead, under the null hypothesis (no difference in
the means), the statistic

f— X=X
1 1 0.40— . X
S| —+— 0.35 A df=1
] \
Ny N, 0.30} N\ =2
0.25} )\ —df=5
. . . . Py ’ ! y\ — —
follows a student’s t distribution with N, +N,-2 = 0,20} o\ Ta==
degrees of freedom. 0.15 ‘
0.10
0.05¢ / Y
005" 2 4

XQEIR{“IE ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder



The t-test
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= = 0.25}
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0.05}

0.00

Given this statistic, one can compute the probability that a value this large (in
absolute value) would be produced were there no difference in the means

(the null hypothesis).

In the NHT procedure, we ‘fail to reject’ the null hypothesis if this probability
exceeds a pre-specified value, typically .05.

In selecting features, we can choose to reject any feature that does not meet

this NHT criterion.
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Generalizing to Multiple Classes

1 The NHT approach can be generalized to K>2
classes using analysis of variance (ANOVA)
methods.

1 We will not cover these here.
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Example
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Limitations of NHT for Feature Selection

A significant t-statistic indicates that there is
sufficient training data to reveal a discriminative
signal in a particular feature.

However, it does not guarantee that including the

feature will improve your classification rate on new
data.

The main problem is that the discriminative
information in that feature may be redundant with
information in other features.
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ROC Curves

As the criterion threshold is swept from right to left, p(HIT)
increases, but p(FA) also increases.

The resulting plot of p(HIT) vs p(FA) is called a receiver-
operating characteristic (ROC).

1 Hits = 97.5%
False alarms = 84%
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- End of Lecture



Qutline

Analyzing individual features
Signal to noise ratio
Null hypothesis testing
Analyzing feature vectors

Divergence
Chernoff Bound and Bhattacharyya Distance

Scatter Matrices

Feature Subset Selection

YO R K ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition

UUUUUU

J. Elder



Divergence

The divergence between two class-conditional distributions is a
symmetrization of the Kullback-Leibler distance between the two
distributions:
Divergence d. =D. +D_

i ij Ji

where D, + D, are the Kullback-Leibler divergences:

D, = ];p(x | a),,)logp((:—:z))J))dx P(o,)
D, = _]ip(x | a)j)log (();IIZJ))dx

The separability of M classes can then be defined as
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Properties of the Divergence

If the components of the feature vectors M M
are conditionally independent, then d = ZI‘Z;dUP(a)i)P(a)J.)
i=1 j=
AL where d. =D +D.
o, )= S (x) =2,
m=1 and
The divergence is general in the sense that r p(x | a),.)
: . D = jp(xla),)log dx
it can be non-zero even if the class- . i P(x | o )
conditional means are the same. !
o w plxlo)
However, for multivariate normal D, = J p(x | a)j)log dx
distributions with equal covariance = p(x | a)/.)

matrices, the divergence reduces to the
Mahalanobis distance between the means:

dy = (H,- —H )f " (H,- - ”f)
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Chernoff Bound

The minimum classification error P_ attainable by a Bayes classifier
for two classes is given by

o0

7, = [rin(e(0)plx10) (0, )plx 1o, ox

—0Q

Using the inequality
min(a, b) < a’b'* fora,b>0 and 0<s<l1

yields the Chernoff bound:

2. <p(o) p(o) " Jplx10) plxla) "o

Since this must apply for all s between O and 1, one can (in theory)
find the tightest bound by constrained minimization with respect to s.
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Bhattacharyya Distance

Using s = 1/2, and assuming multivariate normal
distributions, a specific form of the Chernoff
distance known as the Bhattacharyya distance can

be derived.

Again, if the covariances are equal, the
Bhattacharyya distance is proportional to the
Mahalanobis distance.
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Scatter Matrices

The divergence and Chernoff bound are only readily computed for normal distributions.
A more easily computed measure of class separability is based upon scatter matrices.

The within-class scatter matrix S is defined as:
M
Sw = Zpizi'
i=1
n
where P = NI is the empirical estimate of the prior for Class o,
and X is the covariance matrix for Class o,

The between-class scatter matrix S, is defined as:

M
5= 520 )1 ).

where (i is the mean for Class @, and y, is the pooled mean.
The mixture scatter matrix S_ is defined as:

S = E[(x — ,uo)(x — uo)f}.
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Scatter Matrices

Measures of separability can be formed from these
scatter matrices. Recalling that:
The trace of the covariance matrix is equal to the sum

of the eigenalues and is a measure of the total
variance in the data

The determinant of the covariance matrix can also be
used as a measure of the total variability and is
sometimes called the generalized variance

We have the following measures of separability:

T _ trace (Sm)

Lo trace (SW)
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Selecting Feature Vectors

The methods we have discussed provide a means for
selecting a single feature.

One can use any of these to select a subset of features
based upon their individual merits.

However, this does not take into account the statistical
redundancy between these features.

Ch 5.7.2 of the textbook discusses some heuristics for
reducing this redundancy when selecting feature
subsets. We will not discuss these here.

We will discuss more powerful and principled methods
for selecting feature subsets (dimensionality reduction,
boosting) in coming lectures.
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